RHIC BBLR design and new long-range beam-beam measurement

Wolfram Fischer

R. Calaga, BNL, T. Sen, FNAL, U. Dorda, J.-P. Koutchouk, F. Zimmermann, CERN

RHIC Retreat, Port Jefferson, 11 July 2006

RHIC Interaction Region

- LRBB important effect in LHC (and B-factories), under investigation in LARP
- Partial compensation recently successful in DA Φ NE (τ_{ℓ} improved)
- With >120 bunches cannot avoid long-range beam-beam interactions (eRHIC)
- RHIC is a good test bed for a wire compensator (more difficult in Tevatron)

RHIC BBLR design – locations

Long-range beam-beam effect at 100 GeV

RHIC long-range beam-beam compensator design

- 1 unit in each ring, side-by-side
- vertically movable (wire in shadow of adjacent beam pipe when not in use)

RHIC long-range beam-beam compensator design

Table 3: Main parameters for RHIC long-range beam-beam compensators.

Table 3: Main parameters for i			•
quantity	unit	value	comment
integrated strength (IL) , single interaction	$_{ m Am}$	9.6	
maximum integrated strength $(IL)_{max}$	$_{ m Am}$	125	
length of wire L	m	2.5	
radius of wire r	$_{ m mm}$	3.5	
number of heat sinks n		3	at both ends and in middle
electrical resistivity ρ_e	$\Omega \mathrm{m}$	1.72×10^{-8}	Cu (at 20°C)
heat conductivity λ	${ m Wm^{-1}K^{-1}}$	384	Cu (at 20°C)
density ρ_g	kg/m^3	8.96×10^{3}	Cu (at 20°C)
thermal expansion coefficient	K^{-1}	1.68×10^{-5}	Cu (0 to 100°C)
melting temperature	K	1083	Cu
radius of existing beam pipe r_p	mm	60	
current in wire I , single interaction	A	3.8	
maximum current in wire I_{max}	A	50	
electric resistance R	${ m m}\Omega$	1.12	
maximum voltage U_{max}	mV	55.9	
maximum dissipated power P_{max}	W	2.8	
maximum temperature change ΔT_{max}	K	15	
maximum change in length ΔL_{max}	$_{ m mm}$	0.4	
vertical position range	$_{ m mm}$	65	
vertical position range	σ_y	10.6	for $\gamma = 107$, $\beta^* = 1$ m,
	-		and $\epsilon_n = 20 \text{ mm} \cdot \text{mrad}$
weight of wire G	kg	0.9	

Summary

• Long-range beam-beam effect observable at 100 GeV (not very pronounced)

• Plan to install long-range compensator in summer 2006 (still under construction)

- Planned tests in Run-7:
 - Single beam and compensator
 (enhanced diffusion may help compensation)
 - Long-range beam-beam and compensator